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Abstract

We present the results of electrical resistivity and Hall effect measurements on single crystals

of HfNiSn, TiPtSn, and TiNiSn. Semiconducting behavior is observed in each case, involving the

transport of a small number of highly compensated carriers. Magnetization measurements suggest

that impurities and site disorder create both localized magnetic moments and extended param-

agnetic states, with the susceptibility of the latter increasing strongly with reduced temperature.

The magnetoresistance is sublinear or linear in fields ranging from 0.01 - 9 Tesla at the lowest

temperatures. As the temperature increases, the normal quadratic magnetoresistance is regained,

initially at low fields, and at the highest temperatures extending over the complete range of fields.

The origin of the vanishingly small field scale implied by these measurements remains unknown,

presenting a challenge to existing classical and quantum mechanical theories of magnetoresistance.

PACS numbers: 71.20.Lp.71.20.Nr,72.20.-i
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One of the most exotic settings for small gap insulators is among materials made entirely

of metals, i.e. intermetallic compounds. Nonetheless, it was demonstrated in the early

1990’s that a subset of the half-Heusler compounds, with the generic formula RNX (R,N are

transition metal elements, and X is a main group element), display semiconducting transport

while infrared absorption experiments found semiconducting gaps with magnitudes of ∼100

meV or less [1, 2]. In subsequent years, these materials were found to have a substantial

thermopower [2, 3], and a number of different compositions were explored [4, 5, 6, 7, 8]

in the hopes of optimizing these characteristics. All of these experiments were carried

out on polycrystalline samples, and since annealing dramatically affected their transport

properties [2, 4], it was clear that the samples were unlikely to be either stoichiometric, or

single phase. Understanding the intrinsic behaviors of these unusual materials has awaited

the synthesis of single crystal samples, which we report here.

Many intermetallic compounds form in the Heusler structure RN2X, with four interpen-

etrating face centered cubic lattices, where the N elements lie at the center of the rock-salt

cube formed by the R and X elements. The half-Heuslers are a variant on this structure,

where one of the sublattices is entirely vacant, implying that now the N atoms ideally occupy

every other rock-salt cube. This MgAgAs structure is found in intermetallic compounds with

16-20 electrons per formula unit z, but most often when z=18 as in the RNiSn (R=Ti, Zr,

and Hf) [9]. Of the known half-Heusler compounds [10], only a few are thought to be insulat-

ing in the absence of disorder: RNiSn (R= Ti, Zr, and Hf) and RNSn (R=Zr and Hf, N=Pd

and Pt) [1], LnPdSb (Ln=Ho,Er, Dy) [6], LnPtSb (Ln=trivalent rare earth) [8], CoTiSb and

CoNbSn [7], and NbIrSn [5]. Studies of half-Heusler systems in which the electron count

is changed systematically [7, 11, 12] reveal that insulating behavior is generally observed

near z=18, while metallic and sometimes magnetically ordered systems are found at both

higher and lower electron counts. We note that this result is based largely on resistance

measurements carried out on polycrystalline samples, and that site disorder is potentially

large in the half-Heusler structure, even for nominally stoichiometric compositions [1, 4].

For these reasons, the exact range of intrinsic insulating behavior, is still experimentally

uncertain. Electronic structure calculations [13] support the view that the semiconducting

behavior found in the RNiSn (R=Ti,Zr, Hf) is an intrinsic feature, finding indirect gaps

between the Γ and X points in each compound. The gap is determined by the strength of

the R-Sn pd hybridization, which leads to anticrossing of the extrema of the conduction and
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valence bands, which have primarily R dxy character. The anticrossing is further amplified

through an indirect interaction of the R states mediated by low lying Ni states. Nonetheless,

the indirect gaps in TiNiSn, ZrNiSn, and HfNiSn are expected to be nearly identical, ∼ 0.5

eV.

The purposes of this paper are two fold. First, we report the results of transport and

magnetization experiments on single crystals of TiNiSn, HfNiSn, and TiPtSn. For com-

parision, similar experiments were carried out on polycrystalline samples as well. These

measurements show that the semiconducting behavior found in polycrystalline samples is

at least partly intrinsic, although electron microscopy evidence is presented which reveals

substantial metallurgical phase separation in all polycrystalline samples. All of the sam-

ples, both single crystal and polycrystalline, are weakly magnetic, due to the presence of

both extended and localized moment bearing defect states. The Hall constant is unusually

small, suggesting a near balance of electrons and holes. While our original objective was

to establish the RNiSn as intrinsic semiconductors by measuring single crystals instead of

polycrystals, we found in addition that the magnetotransport is anomalous in this family of

compounds. The second section of this paper is devoted to a description of the linear mag-

netoresistance found above a field scale which grows linearly with temperature, and which

varies only moderately among our different samples.

Polycrystalline samples of HfNiSn were prepared by arc melting in a high purity Ar

atmosphere, followed by high temperature vacuum annealing. An electron backscattering

image of the as cast material is shown in Fig. 1a, revealing that most of the sample is near-

stoichiometric HfNiSn, but that there are additional phases at the boundaries of the grains.

Microprobe measurements find that these phases are roughly equal quantities of Hf5Sn4 and

the Heusler compound HfNi2Sn, together making up about 4% of the total as cast sample

volume. After annealing the as cast material in vacuum at 1000 C for 720 hours [1], the

grain boundary phases are much reduced in volume (Fig. 1b), and we presume that the

composition of the grains approaches the stoichiometric level. Annealing had very similar

effects on both TiNiSn and ZrNiSn polycrystals, which were found to undergo even more

extensive phase separation. We also attempted to introduce B,Ta,Lu,Co,Mn,U,and Ce into

HfNiSn and ZrNiSn as dopants. In every case, the dopants were segregated in the grain

boundary phases, with no measurable solubility in the HfNiSn and ZrNiSn grains. We note

that earlier efforts to dope the RNiSn also employed some of these elements [4, 10, 14],
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and our results suggest that the primary effects of doping observed in these works likely

result from modifications to the conducting properties of the grain boundary phases, and

not from changes in the RNiSn matrix itself. We also experimented with shorter anneals at

higher temperatures. Fig. 1c shows that a 72 hour anneal at 1300 C significantly decreases

the volume of grain boundary phases, which is now largely Hf5Sn4, although higher levels

of HfNi2Sn and significant Sn loss from the matrix are observed near the surface of the

polycrystalline sample. Due in part to these concerns about sample homogeneity, single

crystals of HfNiSn were prepared at the University of Amsterdam/Leiden University ALMOS

facility using the tri-arc assisted Czolchralski method, while single crystals of TiNiSn and

TiPtSn were synthesized at Ames Laboratory from a Sn flux [15]. The crystal structures

of all HfNiSn samples, both single crystal and polycrystal, were verified to be the MgAgAs

type by powder x-ray diffraction.

We have studied these samples using both magnetization measurements, carried out using

a Quantum Designs SQUID magnetometer, and electrical transport measurements, which

employed both a Quantum Designs Physical Phenomena Measurement System and home-

built helium cryostat systems. The resistivity and Hall effect measurements were performed

at a frequency of 17 Hz, in the conventional four-probe and five probe configurations, re-

spectively. Sweeps in positive and negative fields were combined to separate the mixed Hall

signal and longitudinal magnetoresistance at each temperature. Special care was taken to

avoid heating by the measuring current, especially at the lowest temperatures.

Sample homogeneity has a profound effect on the transport observed in the half-Heuslers.

Fig. 2 depicts the temperature dependent resistivity for four different samples of HfNiSn:

single crystal, as cast polycrystal, and polycrystal annealed for 720 hours at 1000C (opti-

mally annealed), and 72 hours at 1300 C. The resistivity increases slowly with decreasing

temperature in the as cast material and reaches a broad maximum near 120 K, before de-

creasing and displaying a superconducting transition near 3.8 K. The superconductivity is

easily suppressed with modest fields, and since it is absent in the optimally annealed and

single crystal samples we ascribe it to the grain boundary phases, or to trace amounts of

elemental Sn. The resistivity of the optimally annealed polycrystalline sample reproduces

the insulating behavior of the single crystal, although its resistivity is more than an order

of magnitude smaller for the entire temperature range. The 72 hour/1300C anneal has an

intermediate effect, marginally increasing the measured resistivity over that of the as-cast
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sample, while rendering it insulating down to the superconducting transition. We conclude

from the data in Fig. 2 that the grain boundary phases are highly conducting relative to

the matrix, but that once they are removed by annealing HfNiSn is intrinsically a semi-

conductor, as previously claimed on the basis of experimental evidence gathered from the

polycrystalline samples [1].

Despite their intermetallic character, the single crystals of HfNiSn, TiNiSn, and TiPtSn

all display semiconducting behavior, as predicted for filled d-band half-Heuslers [13]. Fig.

3a shows the temperature dependences of the electrical resistivity of samples of all three

materials, showing the behavior typical of n-type semiconductors. The activation plots

of Fig. 3b are not linear over the entire range of temperatures investigated. In every

case, the resistivity slowly approaches a constant value at the lowest temperatures, but in

addition there are regions of distinctly different slopes, especially for TiNiSn. These results

indicate the presence of narrow bands of impurity/defect states in the semiconducting gap,

with excitation energies which are smaller than the semiconducting gap itself. The highest

temperature transport gaps are very small: 26 meV for HfNiSn, 28 meV for TiPtSn, and

79 meV for TiNiSn. The estimates for the transport gaps in HfNiSn and TiNiSn are much

smaller than the values previously reported for polycrystals [1], as well as being smaller

than the indirect gap of 0.5 eV predicted by electronic structure calculations for TiNiSn and

HfNiSn [13].

Hall effect measurements have been carried out on single crystals of HfNiSn, TiNiSn and

TiPtSn, in order to estimate the number and type of carriers present. The data are presented

in Fig. 4a. No Hall signal was detected in single crystal or polycrystalline HfNiSn in fields as

large as 9 Tesla, and for temperatures between 1.2 K and 12 K. Our experimental accuracy

consequently yields only an lower bound for a single band carrier concentration n of 5x1021

cm−3, which is more than one carrier per unit cell. The Hall constant in TiPtSn is just at

the limits of our experimental resolution, and also indicates a large carrier concentration ∼

1x1021cm3. In view of the semiconducting characters of single crystal HfNiSn and TiPtSn,

we view these single band carrier concentrations as unreasonably high. We consider it more

likely that both HfNiSn and TiPtSn are very close to perfect compensation, and perhaps may

even be semimetals. In contrast, a large Hall voltage was detected in TiNiSn, linear in field

and with a slope which indicates that the dominant carriers are electrons. The temperature

dependence of the electron concentration n deduced from these measurements is plotted in
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Fig. 4b, showing a strong increase with reduced temperature, amounting to an increase by

approximately one electron per 365 unit cells between 40 K and the approximately constant

value of 1x1019 cm−3 found below 15 K. It is significant that the low temperature electron

concentration in TiNiSn is approximately the same as the number of paramagnetic moments

inferred from the magnetization measurements, which we discuss next.

All of the single crystal and polycrystalline samples we measured are weakly magnetic,

despite the nominally nonmagnetic character expected for the filled-d shell half-Heusler

compounds. The field dependence of the magnetization of polycrystalline HfNiSn, annealed

for 720 hours at 1000 C, is presented in Fig. 5a, while similar data for single crystal

TiNiSn appear in Fig. 5b. In both cases, the magnetization is strongly nonlinear, especially

at low fields and low temperatures. As the temperature is raised, the magnetization is

increasingly dominated by a diamagnetic contribution, linear in field, which is especially

evident for the TiNiSn sample. The magnetization M divided by a constant measuring

field of 1.5 T is plotted in Fig. 6 as a function of temperature for three different samples:

polycrystalline HfNiSn, both as cast and annealed for 720 hours at 1000 C, as well as single

crystal TiNiSn. Fig. 6 shows that the paramagnetic contribution to the magnetization is

largest at low temperatures, but is superposed on a diamagnetic contribution. It is evident

that the magnitudes of the paramagnetic and diamagnetic components, as well as their

relative weights, vary considerably among the samples we investigated.

Figures 5 and 6 suggest that it may be possible to separate the two components of the

magnetization by modelling the magnetization in each sample as M(H,T) = χoH+F(H/T).

The first term represents a field independent susceptibility, which we will show combines

the normal diamagnetic susceptibility of the semiconducting host, with an additional Pauli

paramagnetic susceptibility, which varies among samples. Given the small magnitude of the

moments shown in Fig. 5, we think it unlikely that long range magnetic order is responsible

for the nonlinear magnetization found at low temperatures. Instead, we suggest that the

second term represents the scaling behavior of isolated and localized magnetic moments,

where F is consequently expected to be the Brillouin function.

The results of this modelling are shown in Fig. 7, which demonstrates that the magneti-

zation sweeps taken in both samples for temperatures which range from 2 K - 20 K collapse

onto scaling curves if a diamagnetic term is previously subtracted from the data at each

temperature. As indicated, the scaled and corrected magnetizations for HfNiSN and TiNiSn
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are well described by J=1/2 Brillouin functions, yielding moment densities of 1.98x10−3
µB

per formula unit TiNiSn and 1.55x10−3
µB and 0.144 µB per formula unit HfNiSn for the two

annealed and polycrystalline HfNiSn samples investigated. We find that the diamagnetic

susceptibilities χo of the three systems are also very different, as Fig. 6 suggests. These

susceptibilities are plotted in Fig. 8, showing that | χo | is much larger for TiNiSn than for

either HfNiSn sample, although | χo | varies by almost an order of magnitude between the

two HfNiSn samples. While χo approaches a constant value at low temperature in one of the

polycrystalline HfNiSn samples (filled circles), in each of the three samples, | χo | increases

approximately linearly with temperature.

The pronounced temperature and sample dependences of χo which are demonstrated in

Fig. 8 argue strongly for the presence of a paramagnetic contribution to the magnetization

which is linear in field. The susceptibility of a semiconductor is approximated by the sum of

the core susceptibilities of the constituent atoms: -4.8x10−5 emu/g for HfNiSn and -3.7x10−5

for TiNiSn[16], and is consequently independent of temperature and invariant among samples

of the same nominal composition. The values we find for χo in HfNiSn and TiNiSn do not

approach these limits on the temperature range of our experiment, suggesting the presence

of an additional positive magnetization, linear in field and decreasing in magnitude with

increasing temperature. The variation of χo between the two HfNiSn samples suggests

that this inferred positive susceptibility has an extrinsic origin, consistent with the small

magnitude of the local moments found in each sample, and with the variations in moment

concentrations found among different samples.

We conclude that there are two magnetic entities present with different relative weights

in each of our half-Heusler samples, superposed on the diamagnetic response of the semi-

conducting host. The first entities are localized magnetic moments, perhaps generated by

the inevitable site disorder characteristic of the half-Heusler structure. Still, the level of

this putative disorder can be quite low, corresponding to only one defect per 7000 unit cells

in our least magnetic HfNiSn sample. Secondly, we propose that there are also extended

and metallic states present which are responsible for the inferred paramagnetic susceptibil-

ity. In agreement with Hall effect measurements on TiNiSn, the number of these metallic

states grows with decreasing temperature. It is interesting that the electron concentration in

TiNiSn is similar to the concentration of localized magnetic moments, suggestive that both

have the same origin, presumably defects or impurities. Further, the data suggest that the
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electron contributed by each impurity or defect in TiNiSn ultimately becomes delocalized

as T→0, which is, intriguingly, just what is expected if the moment bearing impurities are

compensated by the Kondo effect.

Perhaps the most striking property of the nonmetallic half-Heusler compounds is their

magnetoresistance, which is linear or even sublinear in field at the lowest temperatures.

The anomalous magnetoresistance has been observed in every half-Heusler compound we

have measured, both single crystals and polycrystals, both as cast and annealed. This is

demonstrated in Fig. 9 which presents the 2 K magnetoresistances of HfNiSn, TiPtSn, and

TiNiSn single crystals, and HfNiSn polycrystal, both as cast and annealed for 720 hours at

1000C. The magnetoresistances of the single crystal samples are markedly sublinear, while

those of the polycrystalline samples are more highly linear. In neither case is there any

suggestion of a quadratic magnetoresistance, down to fields as small as 1000 Oe. We note

that trace superconductivity in the polycrystalline samples prohibits measurements to fields

less than ∼ 500 Oe. The magnitude of the magnetoresistance is rather modest, amounting

to a few percent in each of the crystalline samples. It approaches 10% at 9 T in the as-

cast polycrystalline sample, although annealing reduces the magnetoresistance to the level

observed in the single crystals. This may result either from a compactification of the internal

structure of the polycrystals, since annealing removes conducting grain boundaries, or from

rendering the HfNiSn grains more nearly stoichiometric, as in the single crystal.

The low field magnetoresistance of all samples ultimately becomes quadratic in field if the

temperature is increased sufficiently. The longitudinal magnetoresistance of single crystal

HfNiSn is presented at several temperatures in Fig. 10, with an expanded low field region in

the inset. At 2 K, the magnetoresistance is sublinear over our entire field range, and is never

quadratic, even at the lowest fields. At 4 K, the magnetoresistance is linear over virtually

the entire range of fields studied, with little trace of the upward curvature which emerges

at the lowest fields at 6 K. Raising the temperature still furthur yields a range of fields for

which quadratic magnetoresistance is found. This is demonstrated in Fig. 11, where the

magnetoresistance of single crystal HfNiSn is plotted as a function of H2. At 30 K and above,

the magnetoresistance is quadratic in field for the entire range of fields studied, 0.01 -9 T.

As the temperature is lowered, clear departures from ∆ρ/ρ ∝ H2 are observed, below fields

H∗ which become progressively smaller as the temperature is reduced. This analysis has

been repeated on all of our samples, and the results are summarized in Fig. 12. It is evident
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that the range of fields H≤H∗ and temperatures for which ∆ρ/ρ ∝ H2 varies considerably

among the different samples. For instance, the magnetoresistance of the annealed sample of

HfNiSn(open circles, Fig. 12) is quadratic in fields up to 9 T for all temperatures above 15

K, while clear departures are still evident at temperatures as large as 100 K for an as cast

polycrystalline sample of HfNiSn(open squares, Fig. 12).

Fig. 12 may be viewed as an organizational scheme for our magnetoresistance observa-

tions, analagous to a phase diagram, where H∗(T) represents a crossover from a regime at

low fields where the magnetoresistance is quadratic in field, to a regime at high fields where

the magnetoresistance is linear or even sublinear in field. In agreement with the discussion

of Fig. 9, the linear magnetoresistance is seen for the widest range of temperatures in the

as cast polycrystalline samples, while annealing confines the linear magnetoresistance to the

lowest temperatures and highest fields. H∗(T) for the single crystals is similar to that of the

most homogeneous polycrystalline samples, which have been annealed for the longest times.

The observation of a linear or sublinear magnetoresistance is anomalous, as the magne-

toresistance typically depends on the field magnitude, yielding a magnetoresistance which is

even and usually quadratic in the applied field. Nonetheless, there are a few circumstances

in which a linear magnetoresistance is expected. A linear magnetoresistance can occur in

inhomogeneous materials, resulting from the accidental admixture of the Hall signal[17]. We

rule out this possibility for the half-Heuslers, as we observe linear magnetoresistance in single

crystals, and further since the Hall signal is immeasurably small, especially in HfNiSn and

TiPtSn. Similarly, a variety of different mechanisms can lead to linear magnetoresistance in

systems with large carrier concentrations[18, 19], but in most cases their application to the

minimally magnetic and essentially semiconducting half-Heuslers seems tenuous. Finally,

we note that there is no evidence for either magnetic or structural transitions, which might

provide an internal symmetry breaking field, superseding the applied field.

Linear magnetoresistance is expected in metals with closed Fermi surface orbits at in-

termediate fields, in a crossover regime between the quadratic magnetoresistance expected

at low fields, and saturation at high fields. The range of fields over which linear magne-

toresistance can be observed is potentially quite extensive for materials with a high degree

of compensation [? ]. However, this linear crossover regime emerges when the product of

the cyclotron frequency ωc and the scattering time τ exceeds one, ωcτ ≥1. For TiNiSn at 2

K, where n=1.3x1019 and ρ=18Ω-cm, ωcτ=1 for an applied field of 3.7x105 Tesla. Indeed,
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this crossover field could be considerably larger if we consider that the Hall measurements

provide only a lower bound on the total number of carriers, which may be electrons as well as

holes. Conversely, if we assume that this crossover field is no more than 100 Oe, consistent

with our lowest temperature magnetoresistance results on single crystal HfNiSn and TiPtSn,

we would require a total carrier concentration of ∼3x1013cm−3. It is difficult to believe that

the numbers of electrons and holes present in both our single crystal and polycrystalline

samples are balanced at the level of one carrier per 108 unit cells, as the absence of a Hall

signal suggests. We are forced to conclude that in each of our samples, linear or sublinear

magnetoresistance is observed for a wide range of fields which are comfortably in the low

field limit ωcτ ≪1.

Linear magnetoresistance is also predicted theoretically for a low density electron gas,

in which only the lowest Landau level is occupied [21, 22, 23]. The two requirements for

realizing this quantum magnetoresistance are that H≥(~cn)2/3, and that T≪eH~/m∗c. Con-

sequently, the linear magnetoresistance should only be observed in TiNiSn at fields greater

than 36 Tesla, and for temperatures T≪1.35 (K/T)H. It is possible that the latter condition

is satisfied in the half-Heusler compounds, since as Fig. 11 demonstrates, the linear magne-

toresistance is only observed above a field H∗ which increases linearly with temperature. In

this view, the different slopes found in the plot of H∗(T) for the different systems (Fig. 11)

could plausibly be the result of variations in magnitude of the effective mass between the

least massive (m∗/m=0.09 in as cast HfNiSn 99106) and the heaviest (m∗/m=0.58 in single

crystal TiPtSn). Nonetheless, our observation of linear magnetoresistance in TiNiSn in fields

as small as 0.01 T, where the criterion H≥(~cn)2/3 is dramatically violated is problematic for

the quantum magnetoresistance theory as well. One possibility is that only a tiny fraction

of the carriers detected by the Hall effect in TiNiSn, one carrier in ∼ 2x105, actually par-

ticipates in the quantum magnetoresistance. We note that a similar explanation has been

proposed [22] as an explanation for the linear magnetoresistance observed in doped silver

chalcogenide compounds [24, 25, 26, 27]. Here, spatial separation of conducting and insulat-

ing regions was invoked to achieve the needed reduction in effective carrier concentration, a

scenario which is inapplicable to the single crystal half-Heuslers. The central dilemma lies

with explaining the unexpected persistance of the linear and sublinear magnetoresistance

to extremely low fields, particularly at low temperatures. If the linear magnetoresistance

observed in the half-Heuslers derives from the scattering of fully quantum mechanical states,
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then our measurements suggest a less restrictive set of necessary conditions than has been

theoretically proposed.

It is unclear whether the linear magnetoresistances found in the half-Heuslers and the sil-

ver chalcogenides arise from the same fundamental mechanism. Certainly there are general

resemblences between the doped silver chalcogenides and the semiconducting half-Heuslers,

as both systems are nonmagnetic semiconductors, with small or vanishing values of the Hall

constant. We note that the single crystal half-Heuslers generally have larger resistivities,

and as far as is known, electron concentrations which are similar to those in optimally

doped Ag2−δTe[25]. The progression of the magnetoresistance from sublinear, to linear,

and ultimately to quadratic field dependencies is achieved by increasing temperature and

consequently decreasing electron concentration in the half-Heuslers. In contrast, temper-

ature has a very modest effect on the linear magnetoresistance found in the doped silver

chalcogenides[26], although the same progression of field dependencies is achieved in this sys-

tem by using high pressures to drive the Hall constant through zero[25]. A similar sensitivity

to carrier density is apparently absent in the half-Heuslers, since the magnetoresistances of

single crystal HfNiSn, TiPtSn, and TiNiSn are very similar in magnitude, despite their very

different electron concentrations. Finally, we note that the magnetoresistances of the single

crystal half-Heuslers are also much smaller than those of the silver chalcogenides, and the uni-

formly larger magnetoresistance found in as-cast polycrystalline half-Heusler samples may

support the suggestion that compositional inhomogeneities, present only in the polycrys-

talline half-Heusler samples, are required to obtain large, linear magnetoresistances[22, 25].

We have established here that single crystals of several half-Heusler compounds, selected

to have a total of 18 valence electrons, are small gap insulators, in agreement with both

electronic structure calculations and previous measurements on polycrystalline samples.

Resistivity measurements show that HfNiSn, TiPtSn, and TiNiSn single crystals are all

semiconducting, while magnetization measurements argue that both localized magnetic and

extended states are introduced with impurities or site interchange disorder. Hall effect mea-

surements indicate that the number of electrons and holes is closely balanced in HfNiSn

and TiPtSn, although there is a pronounced excess of electrons in TiNiSn. Both the corre-

sponding electron concentration and the inferred Pauli susceptibility in TiNiSn increase with

decreasing temperature, which may signal the return via the Kondo effect of electrons to

the Fermi surface which were formerly localized at high temperatures in magnetic impurity
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states.

Our results deepen the mystery surrounding the origin of linear magnetoresistance in ma-

terials with small carrier densities. Neither the classical nor quantum mechanical theories

of the magnetoresistance can countenance the persistance of the linear magnetoresistance

to fields as low as 0.01 T, given the mobility and carrier densities characteristic of both

half-Heuslers and the doped silver chalcogenides. The observation of the linear magnetore-

sistance in single crystals of the half-Heuslers, which are presumed to be compositionally

homogeneous on the shortest length scales, removes a degree of freedom present in the doped

silver chalcogenides. Barring another mechanism which dramatically limits the number of

electrons responsible for the linear magnetoresistance in the half-Heuslers, a new explanation

for the origin of the miniscule field scale in these unusual materials must be sought.
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FIG. 1: Electron backscattering images of as cast polycrystalline HfNiSn(a), and after annealing

for 720 hours at 1000C (b) and for 72 hours at 1300 C(c). The white lines in each panel indicate

a length of 100 microns.
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FIG. 3: (a): Temperature dependent resistivities of single crystal TiPtSn (filled circles), TiNiSn

(stars), and HfNiSn (filled diamonds). (b) Activation plots for the same data. Dashed lines are

activation fits over the indicated temperature ranges.

FIG. 4: (a): Hall constants RH and (b) the corresponding single band electron concentrations n

for TiNiSn and TiPtSn single crystals. Solid lines indicate upper limit for RH and lower limit for

n for single crystal HfNiSn.

FIG. 5: (a)Magnetization M(H) of a HfNiSn polycrystal annealed at 1000C for 720 hours, and a

TiNiSn single crystal(b). Note the large diamagnetic magnetization in (b), and the relatively much

smaller diamagnetic contribution in (a), evident only in the 2 K M(H) curve above 3 T.

FIG. 6: Temperature dependence of the magnetization M divided by a 1.5 Tesla measuring field

H for polycrystalline HfNiSn, both as cast and annealed for 720 hours at 1000 C, and for a single

crystal of TiNiSn.

FIG. 7: Magnetization sweeps, corrected for a linear diamagnetic susceptibility, collapse onto

scaling curves as a function of gµBH/kBT, for both polycrystalline HfNiSn (annealed at 1000 C

for 720 hours) and single crystal TiNiSn. The solid lines are J=1/2 Brillouin functions.

FIG. 8: (a): The temperature dependence of the diamagnetic susceptibility χo for annealed samples

of polycrystalline HfNiSn (filled circles and open squares) and single crystal TiNiSn (open circles)

Solid lines are power law fits, demonstrated in a double logarithmic plot in (b). The slopes of the

power law fits to | χo | are 1.0 for one HfNiSn (filled circles) and TiNiSn, and 1.8 for the other

HfNiSn polycrystalline sample(open squares).

FIG. 2: The temperature dependent resistivity ρ for as cast polycrystalline HfNiSn (filled circles),

annealed polycrystalline HfNiSn (open circles: 720 hours at 1000 C; open squares: 72 hours at

1300 C), and for a single crystal of HfNiSn (filled squares). Note that the resistivity of the HfNiSn

single crystal has been divided by 25 for comparison to the polycrystalline samples.
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FIG. 9: The magnetoresistances of single crystals of HfNiSn(HfNiSn(3)), TiPtSn, and TiNiSn at 2

K. For comparison, data are shown for polycrystalline samples of HfNiSn, both as-cast (HfNiSn(1))

and annealed for 720 hours at 1000 C (HfNiSn(2)). The TiNiSn ,TiPtSn, and polycrystalline

HfNiSn data have all been offset for comparison.

FIG. 10: The magnetoresistance ∆ρ/ρ for single crystal HfNiSn at different fixed temperatures.

Inset shows the same data for an expanded range of low fields. The 2 K and 4 K data in the inset

have been offset vertically for comparison.

FIG. 11: The magnetoresistance of a single crystal of HfNiSn plotted as a function of the field

squared at different temperatures. Vertical arrows indicate the highest field H∗ at which quadratic

field dependences are observed, and the dashed lines are linear fits to the data having H≤ H∗.

FIG. 12: H∗(T) defines a crossover from quadratic magnetoresistances at low fields to linear or

sublinear magnetoresistance at high fields. H∗ varies substantially among the different samples:

Single crystal HfNiSn (filled circles), two different annealed polycrystalline HfNiSn samples (open

circles, filled squares), and the corresponding two different as cast polycrystalline HfNiSn ( filled

diamonds:,open squares), and single crystals of TiNiSn (filled triangles) and TiPtSn (open trian-

gles).
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